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Suggested Solution of Selected Problems in HW 3
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P.147 5 and P.170 3 will be graded

All the problems are from the textbook, Complex Variables and Application (9th edition).

1 P.133

For the functions f and contours C in Exercise 8, use parametric representations for C
or legs of C to evaluate ∫

C

f(z) dz.

8. f(z) is the principal branch

za−1 = exp
[
(a− 1)Logz

]
(|z| > 0,−π < Argz < π)

of the power function za−1, where a is a nonzero real number and C is the positively
oriented circle of radius R about the origin.

Solution. The parametric representations for the contour is

C = {z = Reiθ : −π ≤ θ ≤ π}.

Then, one can obtain the integral as follows∫
C

f(z) dz =

∫ π

−π
e(a−1)(lnR+iθ) d

dθ
(Reiθ) dθ

= iR(e(a−1) lnR)

∫ π

−π
eiaθ dθ

=
Ra

a

∫ π

−π
eiaθ diaθ

=
Ra

a

(
eiaπ − e−iaπ

)
=

2iRa

a
sin aπ.

11. Let C denote the semicircular path

C = {z : |z| = 2,Re(z) ≥ 0}.

Evaluate the integral of the function f(z) = z along C using the parametric repre-
sentation

(a) z = 2eiθ
(
− π

2
≤ θ ≤ π

2

)
;

(b) z =
√

4− y2 + iy (−2 ≤ y ≤ 2).
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Solution. (a) The parametric representation of C is

C =

{
z = 2eiθ : −π

2
≤ θ ≤ π

2

}
.

Hence, the integral can be calculated as follows:∫
C

f(z) dz =

∫
C

z dθ

=

∫ π
2

−π
2

2e−iθ
d

dθ
(2eiθ) dθ

= 4i

∫ π
2

−π
2

dθ

= 4πi.

(b) The parametric representation of C is

C = {z =
√

4− y2 + iy : −2 ≤ y ≤ 2}.

Then, the integral can be calculated as follows:∫
C

f(z) dz =

∫
C

z dθ

=

∫ 2

−2
(
√

4− y2 − iy)
d

dy
(
√

4− y2 + iy) dy

=

∫ 2

−2
(
√

4− y2 − iy)

(
− y√

4− y2
+ i

)
dy

= i

∫ 2

−2

(√
4− y2 +

y2√
4− y2

)
dy

= 4i

∫ 2

−2

(
1√

4− y2

)
dy

= 4πi.

2 P.139

5. Let CR be the circle |z| = R (R > 1), described in the counterclockwise direction.
Show that ∣∣∣∣ ∫

CR

Logz

z2
dz

∣∣∣∣ < 2π

(
π + lnR

R

)
,

and then use l’Hospital’s rule to show that the value of this integral tends to zero
as R tends to infinity.

Proof. We take the principal branch of the logarithmic function and apply the fol-
lowing inequality to obtain the desired estimate:∣∣∣∣ ∫

CR

Logz

z2
dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣Logz

z2

∣∣∣∣ dz.
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Further, we have, by the parametric representation of C∣∣∣∣ ∫
CR

Logz

z2
dz

∣∣∣∣ ≤ ∫ π

−π

|lnR + iθ|
R2

|iReiθ| dθ

≤
∫ π

−π

lnR + π

R

≤ 2π

(
lnR + π

R

)
.

By the l’Hospital’s rule, one can have

lim
R→∞

lnR + π

R
= lim

R→∞

1

R
= 0.

Hence, the integral tends to zero as R→∞.

6. Let Cρ denote a circle |z| = ρ (0 < ρ < 1) oriented in the counterclockwise direction
and suppose that f(z) is analytic in the disk |z| ≤ 1. Show that if z−1/2 represents
any particular branch of that power of z, then there is a nonnegative constant M
independent of ρ such that∣∣∣∣ ∫

Cρ

z−1/2f(z) dz

∣∣∣∣ ≤ 2πM
√
ρ.

Thus show that the value of the integral here approaches 0 as ρ tends to 0.

Proof. Since f(z) is analytic in the disk |z| ≤ 1, then it is continuous and bounded.
There exists a positive constant M > 0 such that

|f(z)| ≤M ∀|z| ≤ 1.

Then, the estimate can be obtained as follows∣∣∣∣ ∫
Cρ

z−1/2f(z) dz

∣∣∣∣ ≤ ∫ π

−π

1
√
ρ
|e−iθ/2iρeiθf(ρeiθ)| dθ

≤ 2πM
√
ρ.

Thus, the value of the integral approaches 0 as ρ→ 0.

3 P.147

5. Show that ∫ 1

−1
zi dz =

1 + e−π

2
(1− i).

where the integrand denotes the principal branch

zi = exp(iLogz) (|z| > 0.− π < Argz < π)

of zi and where path of integration is any contour from z = −1 to z = 1 that except
for its end points lies above the real axis.
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Proof. Note that zi = eiLogz = e−θei ln r when the principal branch of the logarithmic
function is selected. The parametric representation

C = {z = x : −1 ≤ x ≤ 1}

is given, then we can calculate the integral as follows∫ 1

−1
zi dz =

∫ 0

−1
zi dz +

∫ 1

0

zi dz

=

∫ 0

−1
e−πei ln(−x) dx+

∫ 1

0

e0ei lnx dx

=

∫ 1

0

e−πei lnx dx+

∫ 1

0

ei lnx dx

= (1 + e−π)

∫ 1

0

ei lnx dx

= (1 + e−π)

∫ 1

0

(cos(lnx) + i sin(lnx)) dx

= (1 + e−π)

∫ 0

−∞
ey(cos y + i sin y) dy (y = lnx)

= (1 + e−π)

∫ 0

−∞
ey(1+i) dy

=
1 + e−π

1 + i

=
1 + e−π

2
(1− i).

4 P.159

2. Let C1 denote the positively oriented boundary of the square whose sides lie along
the lines x = ±1, y = ±1 and let C2 be the positively oriented circle |z| = 4. With
the aid of the corollary in Sec. 53, point out why∫

C1

f(z) dz =

∫
C2

f(z) dz

when

(a) f(z) = 1
3z2+1

;

(b) f(z) = z+2
sin(z/2)

;

(a) f(z) = z
1−ez .

Solution. Try to explain that f(z) is analytic inside the area between C1 and C2.

(a) When z 6= ±
√
3
3
i, f(z) is analytic.
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(b) When z 6= 2nπ, n ∈ Z, f(z) is analytic.

(c) When z 6= 0, f(z) is analytic.

4. Use the following method to derive the integration formula∫ ∞
0

e−x
2

cos 2bx dx =

√
π

2
e−b

2

(b > 0).

(a) Show that the sum of the integrals of e−z
2

along the lower and upper horizontal
legs of the rectangular path {x = ±a, y = 0 or y = b} can be written

2

∫ a

0

e−x
2

dx− 2eb
2

∫ a

0

e−x
2

cos 2bx dx

and that the sum of the integrals along the vertical legs on the right and left
can be written

ie−a
2

∫ b

0

ey
2−i2ay dx− ie−a2

∫ b

0

ey
2−i2ay dy.

Thus with the aid of the Cauchy-Coursat theorem, show that∫ a

0

e−x
2

cos 2bx dx = e−b
2

∫ a

0

e−x
2

dx+ e−(a
2+b2)

∫ b

0

ey
2

sin 2ay dy.

(b) By accepting the fact that ∫ ∞
0

e−x
2

dx =

√
π

2

and observing that ∣∣∣∣ ∫ b

0

ey
2

sin 2ay dy

∣∣∣∣ ≤ ∫ b

0

ey
2

dy

obtain the desired integration formula by letting a tend to infinity in the equa-
tion at the end of part (a).

Proof. (a) The sum of the integrals of e−z
2

along the lower and upper horizontal
legs of the rectangular path can be written as∫ a

−a
e−x

2

dx+

∫ −a
a

e−(x+ib)
2

dx.

Simplify the above expression to obtain

2

∫ a

0

e−x
2

dx+ eb
2

∫ −a
a

e−x
2

e−i2bx dx = 2

∫ a

0

e−x
2

dx+ eb
2

∫ −a
a

e−x
2

(cos 2bx− i sin 2bx) dx

= 2

∫ a

0

e−x
2

dx+ eb
2

∫ −a
a

e−x
2

cos 2bx dx

= 2

∫ a

0

e−x
2

dx− 2eb
2

∫ a

0

e−x
2

cos 2bx dx.
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Note that e−x
2

sin 2bx is odd function and e−x
2

cos 2bx is even function. Simi-
larly, we can obtain the sum of integrals of e−z

2
along the vertical legs on the

right and left ∫ b

0

ie−(a+iy)
2

dy +

∫ 0

b

ie−(−a+iy)
2

dy.

Simplify the expression, we have:

ie−a
2

∫ b

0

ey
2−i2ay dx− ie−a2

∫ b

0

ey
2−i2ay dy = 2e−a

2

∫ b

0

ey
2

sin 2ay.

By the Cauchy-Goursat theorem, the integral of e−z
2

along the rectangle is
zero. It implies that

2

∫ a

0

e−x
2

dx− 2eb
2

∫ a

0

e−x
2

cos 2bx dx+ 2e−a
2

∫ b

0

ey
2

sin 2ay = 0,

∫ a

0

e−x
2

cos 2bx dx = e−b
2

∫ a

0

e−x
2

dx+ e−(a
2+b2)

∫ b

0

ey
2

sin 2ay.

(b) If we accept the fact that ∫ ∞
0

e−x
2

dx =

√
π

2
,

and observe that ∣∣∣∣ ∫ b

0

ey
2

sin 2ay dy

∣∣∣∣ ≤ ∫ b

0

ey
2

dy ≤ beb
2

.

Then letting a→ +∞, we have∣∣∣∣e−(a2+b2) ∫ b

0

ey
2

sin 2ay dy

∣∣∣∣ ≤ be−a
2 → 0.

Hence, we have the following formula∫ ∞
0

e−x
2

cos 2bx dx =

√
π

2
e−b

2

(b > 0).

5 P.170

2. Find the value of the integral of g(z) around the circle |z − i| = 2 in the positive
sense when

(a) g(z) = 1
z2+4

;

(b) g(z) = 1
(z2+4)2

.
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Solution. (a) Let f(z) = 1
z+2i

, then by Cauchy’s integral formula, we have∫
C

g(z) dz =

∫
C

f(z)

z − 2i
dz = 2πi

1

2i+ 2i
=
π

2
.

(b) Let f(z) = 1
(z+2i)2

, then by Cauchy’s integral formula, we have∫
C

g(z) dz =

∫
C

f(z)

(z − 2i)2
dz = 2πif ′(2i) =

π

16
,

where

f ′(z) = − 2

(z + 2i)3
.

3. Let C be the circle |z| = 3 described in the positive sense. Show that if

g(z) =

∫
C

2s2 − s− 2

s− z
ds (|z| 6= 3)

then g(2) = 8πi. What is the value of g(z) when |z| > 3?

Proof. Let f(s) = 2s2 − s− s. By Cauchy’s integral formula, we have

g(2) =

∫
C

f(s)

s− 2
ds = 2πif(2) = 8πi.

The value of g(z) is 0 when |z| > 3 since the function f(s)
s−z is analytic inside and on

the contour C and by the Cauchy-Goursat theorem, the conclusion holds.

4. Let C be any simple closed contour described in the positive sense in the z plane
and write

g(z) =

∫
C

s3 + 2s

(s− z)3
ds.

Show that g(z) = 6πiz when z is inside C and that g(z) = 0 when z is outside C.

Proof. By the Cauchy’s integral formula, one can obtain

g(z) = πif ′′(z) = 6πiz, ∀z inside C.

where f(s) = s3 + 2s. For any z outside C, g(z) = 0 by the Cauchy-Goursat
theorem.


